您的会员账号:
网站首页 >> 物流论文 >> 数据挖掘技术在物流业中的应用研究

数据挖掘技术在物流业中的应用研究

[日期:2015-01-28]   来源:www.qq8008.com  作者:admin   阅读:0[字体: ]
  随着信息时代数据量的剧增,深化物流管理的最有效方法是在其中引入数据挖掘技术,充分合理的利用数据挖掘技术,可以进行市场预测和分析,这必将为正确的决策奠定坚实的基础。本文介绍数据挖掘技术的概念及方法,并结合物流企业的管理,阐述数据挖掘技术在物流企业中的具体应用。 

      1 引 言 

    物流需求的个性化、多样化和集成化,要求物流服务企业必须不断改进和优化企业的运作流程,开发出具有针对性的物流服务,以适应物流市场发展的变化。数据挖掘技术,以其强大关联、分类、预测等功能,可将物流企业运营过程中产生的信息数据进行有效整合处理,为物流企业的决策提供依据。 

      2 数据挖掘技术 

      数据挖掘又称为基于数据库的知识发现,是从大量的、不完全的、模糊的、随机的实际应用数据中,提取隐含在其中的、潜在有用的信息和知识的过程。它不仅仅局限于对数据的查询和访问,主要在于找出数据之间的潜在联系。从企业角度看,数据挖掘是一种企业信息处理技术,特点是对企业数据库中的数据进行抽取、转换、分析等,从中提取可用于辅助企业决策的关键数据。数据挖掘的目标是从大量数据中,发现隐藏于其后的规律或数据间的关系,从而服务于决策。数据挖掘方法有很多种,其中比较典型的有关联分析、序列模式分析、分类分析、聚类分析等。 

      (1)关联分析 

      数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之问存在某种规律性,就称为关联。关联分析即利用关联规则进行数据挖掘,而关联规则是描述事物之间同时出现的规律的知识模式,关联分析的目的是为挖掘出隐藏在数据间的相互关系。 

      (2)序列模式分析 

    序列模式分析和关联分析相似,他把数据之问的关联性与时间性联系起来,为了发现序列模式,不仅需要知道事件是否发生,而且需要确定事件发生的时间。其目的也是为了挖掘数据之间的联系,但序列模式分析的侧重点在于分析数据问的前后或因果关系。 

      (3)分类分析 

      分类分析就是分析样本数据库中的数据,为每个类别做出准确的描述建立分析模型或挖掘出分类规则,然后用这个分类规则对其他记录进行分类,能够把数据集中的数据映射到某个给定的类上,其输入集是一组记录集合和几种标记。 

      (4)聚类分析 
  
      与分类分析不同,聚类分析法的输入集是一组未标定的记录,也就是说此时输入的记录还没有进行任何分类。其目的是根据一定的规则,合理地划分记录集合,使组之间的差别尽可能大,组内的差别尽可能小。 

      3 数据挖掘技术在物流企业中的应用 

      现代物流信息系统是一个庞大复杂的系统,特别是全程物流,包括运输、仓储、配送、搬运、包装和物流再加工等诸多环节,每个环节信息流量十分巨大。以往物流企业主要利用信息的有效沟通、快速传达、物流运作调控和辅助决策的功能,而很少挖掘信息中的有用数据。但随着市场竞争的加剧、企业精细化管理愿望的增强以及先进技术方法的开发应用,对信息中的数据进行挖掘利用已成为物流企业赢取客户、增加利润、提升自身竞争力的有效途径。 

      3.1 数据仓库的建立 

      数据仓库作为数据挖掘的基础,不同于传统的联机事务处理系统,它具有面向主题的、集成的、不可更新以及随时间变化的特性。各个联机事务处理系统作为数据仓库的原始数据源,以文件方式提供企业在日常活动中收集的包括定货单、存货单、应付帐、交易条款、客户情况等在内的大量数据资料和报表。同时还有大量的外部信息等数据。数据仓库通过ETL过程(抽取、转换和加载)处理这些接口文件,并且按不同的主题域组织、存储和管理这些客户数据。通过数据仓库接口,对数据仓库中的数据进行联机分析和数据挖掘。在建立完成企业级的信息数据仓库之后,可以基于这个数据仓库平台进行数据挖掘工作。 

      3.2 物流企业中的数据挖掘 

      一般来讲,数据挖掘在物流企业中可以应用在以下几方面: 

      1)市场预测 

      产品在进入市场后,并不会永远保持最高销量。一般来讲,随着时间的推移,产品会遵守销量变化的模式,经历四个阶段,即导入期、增长期、成熟期和衰退期。在各个阶段,产品的生产要求和实物分拨策略是不同的。如在导入期,产品逐步得到市场的认可,销售量可能会快速的增长,这时需要提前的生产计划、生产作业安排以及适合的库存和运输策略,指导企业的生产,合理地控制库存和安排运输。数据挖掘可以作为市场预测的手段,通过聚类和预测工具,达到上述目的。 

      2)物流中心的选择 

      物流中心(流通中心、配送中心)选址问题即求解运输成本、变动处理成本和固定成本等之和为最小的最小化问题。 

      物流中心选址,需要考虑到中心点数量和中心点如何分布等情况。针对这一问题,可以用数据挖掘中的分类树方法来加以解决。分类树 (classification)的目标是连续的划分数据,使依赖变量的差别最大。分类树的真正的目的是将数据分类(classify)到不同组或分支中,在依赖变量的值上建立最强划分。用分类树的方法解决这个问题时,通常需要以下四个方面的数据:1)中心点的位置;2)每个中心点的业务需求量;3)备选点的位置;4)在中心点和备选点之间的距离。 

相关评论